本文概述 随机数是NumPy库中存在的模块。该模块包含用于生成随机数的功能。该模块包含一些简单的随机数据生成方法, 一些排列和分布函数以及随机生成器函数。
简单随机数据 简单随机数据具有以下功能:
1)p.random.rand(d0, d1, …, dn) 随机模块的此功能用于生成给定形状的随机数或随机数。
1 2 3 4 import numpy as np a=np.random.rand(5 , 2 ) a # array ([[0.74710182 , 0.13306399 ], [0.01463718 , 0.47618842 ], [0.98980426 , 0.48390004 ], [0.58661785 , 0.62895758 ], [0.38432729 , 0.90384119 ]])
2)np.random.randn(d0, d1, …, dn) 随机模块的此功能从”标准正态”分布返回样本。
1 2 3 4 5 6 7 import numpy as np a=np.random.randn(2 , 2 ) a # array ([[ 1.43327469 , -0.02019121 ], [ 1.54626422 , 1.05831067 ]]) b=np.random.randn() b # -0.3080190768904835
3)np.random.randint(low [, high, size, dtype]) random模块的此功能用于生成从inclusive(低)到exclusive(高)的随机整数。
1 2 3 4 import numpy as np a=np.random.randint(3 , size=10 ) a # array ([1 , 1 , 1 , 2 , 0 , 0 , 0 , 0 , 0 , 0 ])
4)np.random.random_integers(low [, high, size]) 随机模块的此功能用于生成介于低和高之间的np.int类型的随机整数。
1 2 3 4 5 6 7 import numpy as np a=np.random.random_integers(3 ) a # 2 b=type(np.random.random_integers(3 )) b # <type 'numpy.int32' > c=np.random.random_integers(5 , size=(3 , 2 )) c # array ([[1 , 1 ], [2 , 5 ], [1 , 3 ]])
5)np.random.random_sample([size]) 随机模块的此功能用于在半开间隔[0.0, 1.0)中生成随机浮点数。
1 2 3 4 5 6 7 import numpy as np a=np.random.random_sample() a # 0.09250360565571492 b=type(np.random.random_sample()) b # <type 'float' > c=np.random.random_sample((5 , )) c # array ([0.34665418 , 0.47027209 , 0.75944969 , 0.37991244 , 0.14159746 ])
6)np.random.random([size]) 随机模块的此功能用于在半开间隔[0.0, 1.0)中生成随机浮点数。与np.random.random_sample完全一样
1 2 3 4 5 6 7 import numpy as npa =np.random .random ()a b=type(np.random .random ()) b c=np.random .random ((5 , )) c
7)np.random.ranf([size]) 随机模块的此功能用于在半开间隔[0.0, 1.0)中生成随机浮点数。与np.random.random_sample完全一样
8)np.random.sample([size]) 随机模块的此功能用于在半开间隔[0.0, 1.0)中生成随机浮点数。与np.random.random_sample完全一样
9)np.random.choice(a [, size, replace, p]) 生成一个随机样本,从给定的一维数组生成随机样本。
1 2 3 4 5 6 7 8 9 10 import numpy as np a=np.random.choice(5 , 3 ) a # array ([0 , 3 , 4 ]) b=np.random.choice(5 , 3 , p=[0.2 , 0.1 , 0.4 , 0.2 , 0.1 ]) b # array ([2 , 2 , 2 ], dtype=int 64) aa_milne_arr = [‘pooh‘, ‘rabbit‘, ‘piglet‘, ‘Christopher‘] c=np.random.choice(aa_milne_arr, 5 , p=[0.5 , 0.1 , 0.1 , 0.3 ]) c # array ([‘pooh‘, ‘pooh‘, ‘pooh‘, ‘Christopher‘, ‘piglet‘],dtype=‘|S11‘)
10)np.random.bytes(长度) 随机模块的此功能用于生成随机字节。
1 2 3 import numpy as npa =np.random .bytes (7 )a
随机数生成器 1)np.random.RandomStatee() 是一个伪随机数生成器, 此命令将会产生一个随机状态种子,在该状态下生成的随机序列(正态分布)一定会有相同的模式。
伪随机数是用确定性的算法计算出来的似来自[0,1]均匀分布的随机数序列。并不真正的随机,但具有类似于随机数的统计特征,如均匀性、独立性等。(来自百度)
但是,不同的随机种子状态将会有不同的数据生成模式。这一特点在随机数据生成的统计格式控制显得很重要。
因为是伪随机数,所以必须在rng这个变量下使用,如果不这样做,就得不到相同的随机数组。
1 2 3 4 5 6 7 8 9 10 11 12 rng = np.random.RandomState(0 ) a = rng.rand(4 ) rng = np.random.RandomState(0 ) b = rng.rand(4 ) print(a) print(b) # 输出 [0.5488135 0.71518937 0.60276338 0.54488318 ] [0.5488135 0.71518937 0.60276338 0.54488318 ]
2)np.random.seed([seed]) 随机数种子,使得每次生成的随机数相同。
设置seed()里的数字就相当于设置了一个盛有随机数的“聚宝盆”,一个数字代表一个“聚宝盆”。
当在seed()的括号里设置相同的seed,“聚宝盆”就是一样的,当然每次拿出的随机数就会相同。
如果不设置seed,则每次会生成不同的随机数,但是有时候明明设置了seed()没有变,生成的随机数组还是不同。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 np.random.seed(0 ) a = np.random.rand(10 ) b = np.random.rand(10 ) print(a) print(b) #输出结果 [0.5488135 0.71518937 0.60276338 0.54488318 0.4236548 0.64589411 0.43758721 0.891773 0.96366276 0.38344152 ] [0.79172504 0.52889492 0.56804456 0.92559664 0.07103606 0.0871293 0.0202184 0.83261985 0.77815675 0.87001215 ] np.random.seed(0 ) a = np.random.rand(4 ,3 ) np.random.seed(0 ) b = np.random.rand(4 ,3 ) print(a) print(b) #输出 [[0.5488135 0.71518937 0.60276338 ] [0.54488318 0.4236548 0.64589411 ] [0.43758721 0.891773 0.96366276 ] [0.38344152 0.79172504 0.52889492 ]] [[0.5488135 0.71518937 0.60276338 ] [0.54488318 0.4236548 0.64589411 ] [0.43758721 0.891773 0.96366276 ] [0.38344152 0.79172504 0.52889492 ]]
3)np.random.get_state() 保存状态,记录下数组被打乱的操作(数组如何被打乱的)
4)np.random.set_state(state) 接收get_state()返回的值,按照get_state()打乱的方式对新数组进行同样的操作
1 2 3 4 5 6 7 8 9 10 11 12 import numpy as np train_data = [1 , 2 , 3 , 4 , 5 , 6 ] train_label = ['a' , 'b' , 'c' , 'd' , 'e' , 'f' ] cur_state = np.random .get_state() np.random .shuffle(train_data)print (train_data) np.random .set_state(cur_state) np.random .shuffle(train_label)print (train_label) # [3 , 4 , 6 , 5 , 1 , 2 ] # ['c' , 'd' , 'f' , 'e' , 'a' , 'b' ]
排列 1)np.random.shuffle() 此功能用于通过改组其内容就地修改序列。
1 2 3 4 5 import numpy as np a=np.arange(12) a # array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) np.random.shuffle(a) a # array([10, 3, 2, 4, 5, 8, 0, 9, 1, 11, 7, 6])
2)np.random.permutation() 此函数随机置换序列或返回置换范围。
1 2 3 4 5 6 7 8 9 10 11 12 import numpy as np np.random.permutation(12 ) # array ([ 8 , 7 , 3 , 11 , 6 , 0 , 9 , 10 , 2 , 5 , 4 , 1 ]) np.random.permutation([1 , 4 , 9 , 12 , 15 ]) # array ([15 , 1 , 9 , 4 , 12 ]) arr = np.arange(9 ).reshape((3 , 3 )) np.random.permutation(arr) # array ([[6 , 7 , 8 ], [0 , 1 , 2 ], [3 , 4 , 5 ]])
发行版 有以下排列功能:
1)beta(a, b [, size])
此功能用于从Beta分布中抽取样本。
例:
1 2 3 4 5 6 7 def setup(self): self.dist = dist.beta self.cargs = [] self.ckwd = dict(alpha=2, beta=3) self.np_rand_fxn = numpy.random.beta self.np_args = [2, 3] self.np_kwds = dict()
2)binomial(n, p [, size])
此函数用于从二项分布中抽取样本。
例:
1 2 3 4 import numpy as np n, p = 10, .6 s1= np.random.binomial(n, p, 10) s1
输出
1 array([6, 7, 7, 9, 3, 7, 8, 6, 6, 4])
3)chisquare(df [, size])
此函数用于从二项分布中抽取样本。
例:
1 2 3 import numpy as np np.random.chisquare(2, 4) sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
输出
1 array([6, 7, 7, 9, 3, 7, 8, 6, 6, 4])
4)dirichlet(alpha [, size])
此函数用于从Dirichlet分布中抽取样本。
例:
1 2 3 4 5 6 7 8 Import numpy as np import matplotlib.pyplot as plt s1 = np.random.dirichlet((10, 5, 3), 20).transpose() plt.barh(range(20), s1[0]) plt.barh(range(20), s1[1], left=s1[0], color='g') plt.barh(range(20), s1[2], left=s1[0]+s1[1], color='r') plt.title("Lengths of Strings") plt.show()
输出
5)exponential([scale, size])
此函数用于从指数分布中提取样本。
例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 def __init__(self, sourceid, targetid): self.__type = 'Transaction' self.id = uuid4() self.source = sourceid self.target = targetid self.date = self._datetime.date(start=2015, end=2019) self.time = self._datetime.time() if random() < 0.05: self.amount = self._numbers.between(100000, 1000000) self.amount = npr.exponential(10) if random() < 0.15: self.currency = self._business.currency_iso_code() else: self.currency = None
6)f(dfnum, dfden [, size])
此函数用于从F分布中抽取样本。
例:
1 2 3 4 5 import numpy as np dfno= 1. dfden = 48. s1 = np.random.f(dfno, dfden, 10) np.sort(s1)
输出
1 array([0.00264041, 0.04725478, 0.07140803, 0.19526217, 0.23979 , 0.24023478, 0.63141254, 0.95316446, 1.40281789, 1.68327507])
7)gamma(shape [, scale, size])
此函数用于从Gamma分布中提取样本
例:
1 2 3 4 5 6 7 8 9 10 import numpy as np shape, scale = 2., 2. s1 = np.random.gamma(shape, scale, 1000) import matplotlib.pyplot as plt import scipy.special as spss count, bins, ignored = plt.hist(s1, 50, density=True) a = bins**(shape-1)*(np.exp(-bins/scale) / (spss.gamma(shape)*scale**shape)) plt.plot(bins, a, linewidth=2, color='r') plt.show()
8)geometric(p [, size])
此功能用于从几何分布中提取样本。
例:
1 2 3 import numpy as np a = np.random.geometric(p=0.35, size=10000) (a == 1).sum() / 1000
输出
9)gumbel([位置, 比例, 大小])
此功能用于从Gumble分布中提取样本。
例:
1 2 3 4 5 6 7 import numpy as np lov, scale = 0, 0.2 s1 = np.random.gumbel(loc, scale, 1000) import matplotlib.pyplot as plt count, bins, ignored = plt.hist(s1, 30, density=True) plt.plot(bins, (1/beta)*np.exp(-(bins - loc)/beta)* np.exp( -np.exp( -(bins - loc) /beta) ), linewidth=2, color='r') plt.show()
输出
10)hypergeometric(ngood, nbad, nsample [, size])
此功能用于从超几何分布中提取样本。
例:
1 2 3 4 5 import numpy as np good, bad, samp = 100, 2, 10 s1 = np.random.hypergeometric(good, bad, samp, 1000) plt.hist(s1) plt.show()
输出
1 (array([ 13., 0., 0., 0., 0., 163., 0., 0., 0., 824.]), array([ 8. , 8.2, 8.4, 8.6, 8.8, 9. , 9.2, 9.4, 9.6, 9.8, 10. ]), <a list of 10 Patch objects>)
11)laplace([位置, 比例, 大小])
此功能用于从Laplace或具有指定位置和比例的双指数分布中抽取样本。
例:
1 2 3 4 import numpy as np location, scale = 0., 2. s = np.random.laplace(location, scale, 10) s
输出
1 array([-2.77127948, -1.46401453, -0.03723516, -1.61223942, 2.29590691, 1.74297722, 1.49438411, 0.30325513, -0.15948891, -4.99669747])
12)logistic([位置, 比例, 大小])
此功能用于从逻辑分布中抽取样本。
例:
1 2 3 4 5 6 7 8 9 import numpy as np import matplotlib.pyplot as plt location, scale = 10, 1 s1 = np.random.logistic(location, scale, 10000) count, bins, ignored = plt.hist(s1, bins=50) count bins ignored plt.show()
输出
1 2 3 array([1.000e+00, 1.000e+00, 1.000e+00, 0.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 5.000e+00, 7.000e+00, 1.100e+01, 1.800e+01, 3.500e+01, 5.300e+01, 6.700e+01, 1.150e+02, 1.780e+02, 2.300e+02, 3.680e+02, 4.910e+02, 6.400e+02, 8.250e+02, 9.100e+02, 9.750e+02, 1.039e+03, 9.280e+02, 8.040e+02, 6.530e+02, 5.240e+02, 3.380e+02, 2.470e+02, 1.650e+02, 1.150e+02, 8.500e+01, 6.400e+01, 3.300e+01, 1.600e+01, 2.400e+01, 1.400e+01, 4.000e+00, 5.000e+00, 2.000e+00, 2.000e+00, 1.000e+00, 1.000e+00, 0.000e+00, 1.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 1.000e+00]) array([ 0.50643911, 0.91891814, 1.33139717, 1.7438762 , 2.15635523, 2.56883427, 2.9813133 , 3.39379233, 3.80627136, 4.2187504 , 4.63122943, 5.04370846, 5.45618749, 5.86866652, 6.28114556, 6.69362459, 7.10610362, 7.51858265, 7.93106169, 8.34354072, 8.75601975, 9.16849878, 9.58097781, 9.99345685, 10.40593588, 10.81841491, 11.23089394, 11.64337298, 12.05585201, 12.46833104, 12.88081007, 13.2932891 , 13.70576814, 14.11824717, 14.5307262 , 14.94320523, 15.35568427, 15.7681633 , 16.18064233, 16.59312136, 17.00560039, 17.41807943, 17.83055846, 18.24303749, 18.65551652, 19.06799556, 19.48047459, 19.89295362, 20.30543265, 20.71791168, 21.13039072]) <a list of 50 Patch objects>
13)lognormal([均值, sigma, 大小])
此函数用于从对数正态分布中抽取样本。
例:
1 2 3 4 5 6 7 8 9 10 import numpy as np mu, sigma = 2., 1. s1 = np.random.lognormal(mu, sigma, 1000) import matplotlib.pyplot as plt count, bins, ignored = plt.hist(s1, 100, density=True, align='mid') a = np.linspace(min(bins), max(bins), 10000) pdf = (np.exp(-(np.log(a) - mu)**2 / (2 * sigma**2))/ (a * sigma * np.sqrt(2 * np.pi))) plt.plot(a, pdf, linewidth=2, color='r') plt.axis('tight') plt.show()
输出
14)logseries(p [, size])
此函数用于从对数分布中提取样本。
例:
1 2 3 4 5 6 7 8 import numpy as np x = .6 s1 = np.random.logseries(x, 10000) count, bins, ignored = plt.hist(s1) def logseries(k, p): return -p**k/(k*log(1-p)) plt.plot(bins, logseries(bins, x)*count.max()/logseries(bins, a).max(), 'r') plt.show()
输出
15)multinomial(n, pvals [, size])
此函数用于从多项分布中提取样本。
例:
1 2 import numpy as np np.random.multinomial(20, [1/6.]*6, size=1)
输出
1 array([[4, 2, 5, 5, 3, 1]])
16)multivariate_normal(平均值, cov [, 大小, …)
此函数用于从多元正态分布中提取样本。
例:
1 2 3 4 5 6 7 8 9 10 import numpy as np mean = (1, 2) coveriance = [[1, 0], [0, 100]] import matplotlib.pyplot as plt a, b = np.random.multivariate_normal(mean, coveriance, 5000).T plt.plot(a, b, 'x') plt.axis('equal'023 030 ) plt.show()
输出
17)negative_binomial(n, p [, size])
此函数用于从负二项分布中抽取样本。
例:
1 2 3 4 5 import numpy as np s1 = np.random.negative_binomial(1, 0.1, 100000) for i in range(1, 11): probability = sum(s1<i) / 100000. print i, "wells drilled, probability of one success =", probability
输出
1 2 3 4 5 6 7 8 9 10 1 wells drilled, probability of one success = 0 2 wells drilled, probability of one success = 0 3 wells drilled, probability of one success = 0 4 wells drilled, probability of one success = 0 5 wells drilled, probability of one success = 0 6 wells drilled, probability of one success = 0 7 wells drilled, probability of one success = 0 8 wells drilled, probability of one success = 0 9 wells drilled, probability of one success = 0 10 wells drilled, probability of one success = 0
18)noncentral_chisquare(df, nonc [, size])
此函数用于从非中心卡方分布中抽取样本。
例:
1 2 3 4 import numpy as np import matplotlib.pyplot as plt val = plt.hist(np.random.noncentral_chisquare(3, 25, 100000), bins=200, normed=True) plt.show()
输出
19)normal([位置, 比例, 大小])
此功能用于从正态分布中提取样本。
例:
1 2 3 4 5 6 7 8 9 import numpy as np import matplotlib.pyplot as plt mu, sigma = 0, 0.2 # mean and standard deviation s1 = np.random.normal(mu, sigma, 1000) abs(mu - np.mean(s1)) < 0.01 abs(sigma - np.std(s1, ddof=1)) < 0.01 count, bins, ignored = plt.hist(s1, 30, density=True) plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *np.exp( - (bins - mu)**2 / (2 * sigma**2) ), linewidth=2, color='r') plt.show()
输出
20)pareto(a [, size])
此功能用于从Lomax或Pareto II中提取具有指定形状的样本。
例:
1 2 3 4 5 6 7 8 import numpy as np import matplotlib.pyplot as plt b, m1 = 3., 2. # shape and mode s1 = (np.random.pareto(b, 1000) + 1) * m1 count, bins, _ = plt.hist(s1, 100, density=True) fit = b*m**b / bins**(b+1) plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') plt.show()
输出
21)power(a [, size])
此函数用于从指数为a-1的幂分布中提取[0, 1]中的样本。
例:
1 2 3 4 5 6 7 8 9 10 11 import numpy as np x = 5. # shape samples = 1000 s1 = np.random.power(x, samples) import matplotlib.pyplot as plt count, bins, ignored = plt.hist(s1, bins=30) a = np.linspace(0, 1, 100) b = x*a**(x-1.) density_b = samples*np.diff(bins)[0]*b plt.plot(a, density_b) plt.show()
输出
22)rayleigh([scale, size])
此函数用于从瑞利分布中提取样本。
例:
1 2 3 4 5 val = hist(np.random.rayleigh(3, 100000), bins=200, density=True) meanval = 1 modeval = np.sqrt(2 / np.pi) * meanval s1 = np.random.rayleigh(modeval, 1000000) 100.*sum(s1>3)/1000000.
输出
23)standard_cauchy([size])
此功能用于从模式= 0的标准柯西分布中提取样本。
例:
1 2 3 4 5 6 import numpy as np import matplotlib.pyplot as plt s1 = np.random.standard_cauchy(1000000) s1 = s1[(s1>-25) & (s1<25)] # truncate distribution so it plots well plt.hist(s1, bins=100) plt.show()
输出
24)standard_exponential([size])
此函数用于从标准指数分布中抽取样本。
例:
1 2 import numpy as np n = np.random.standard_exponential((2, 7000))
输出
1 array([[0.53857931, 0.181262 , 0.20478701, ..., 3.66232881, 1.83882709, 1.77963295], [0.65163973, 1.40001955, 0.7525986 , ..., 0.76516523, 0.8400617 , 0.88551011]])
25)standard_gamma([size])
此功能用于从标准Gamma分布中提取样本。
例:
1 2 3 4 5 6 7 8 9 import numpy as np shape, scale = 2., 1. s1 = np.random.standard_gamma(shape, 1000000) import matplotlib.pyplot as plt import scipy.special as sps count1, bins1, ignored1 = plt.hist(s, 50, density=True) y = bins1**(shape-1) * ((np.exp(-bins1/scale))/ (sps.gamma(shape) * scale**shape)) plt.plot(bins1, y, linewidth=2, color='r') plt.show()
输出
26)standard_normal([size])
此功能用于从标准正态分布中提取样本。
例:
1 2 3 4 5 6 import numpy as np import matplotlib.pyplot as plt s1= np.random.standard_normal(8000) s1 q = np.random.standard_normal(size=(3, 4, 2)) q
输出
1 2 array([-3.14907597, 0.95366265, -1.20100026, ..., 3.47180222, 0.9608679 , 0.0774319 ]) array([[[ 1.55635461, -1.29541713], [-1.50534663, -0.02829194], [ 1.03949348, -0.26128132], [ 1.51921798, 0.82136178]], [[-0.4011052 , -0.52458858], [-1.31803814, 0.37415379], [-0.67077365, 0.97447018], [-0.20212115, 0.67840888]], [[ 1.86183474, 0.19946562], [-0.07376021, 0.84599701], [-0.84341386, 0.32081667], [-3.32016062, -1.19029818]]])
27)standard_t(df [, size])
此功能用于从标准学生分布中以df自由度抽取样本。
例:
1 2 3 4 5 6 7 8 intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, 8230, 8770]) s1 = np.random.standard_t(10, size=100000) np.mean(intake) intake.std(ddof=1) t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) h = plt.hist(s1, bins=100, density=True) np.sum(s1<t) / float(len(s1)) plt.show()
输出
1 2 3 6677.5 1174.1101831694598 0.00864
28)三角形(左, 模式, 右[, 大小])
此函数用于从间隔内的三角形分布中抽取样本。
例:
1 2 3 4 import numpy as np import matplotlib.pyplot as plt h = plt.hist(np.random.triangular(-4, 0, 8, 1000000), bins=300, density=True) plt.show()
输出
29)统一([低, 高, 大小])
此功能用于从均匀分布中抽取样本。
例:
1 2 3 4 5 6 7 8 import numpy as np import matplotlib.pyplot as plt s1 = np.random.uniform(-1, 0, 1000) np.all(s1 >= -1) np.all(s1 < 0) count, bins, ignored = plt.hist(s1, 15, density=True) plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') plt.show()
输出
30)vonmises(m1, m2 [, size])
此函数用于从von Mises分布中抽取样本。
例:
1 2 3 4 5 6 7 8 9 10 import numpy as np import matplotlib.pyplot as plt m1, m2 = 0.0, 4.0 s1 = np.random.vonmises(m1, m2, 1000) from scipy.special import i0 plt.hist(s1, 50, density=True) x = np.linspace(-np.pi, np.pi, num=51) y = np.exp(m2*np.cos(x-m1))/(2*np.pi*i0(m2)) plt.plot(x, y, linewidth=2, color='r') plt.show()
输出
31)wald(平均值, 比例尺[, 大小])
此函数用于从Wald或高斯逆分布中抽取样本。
例:
1 2 3 4 import numpy as np import matplotlib.pyplot as plt h = plt.hist(np.random.wald(3, 3, 100000), bins=250, density=True) plt.show()
输出
32)weibull(a [, size])
此函数用于从Weibull分布中抽取样本。
例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 import numpy as np import matplotlib.pyplot as plt from scipy import special x=2.0 s=np.random.weibull(x, 1000) a = np.arange(1, 100.)/50. def weib(x, n, a): return (a/n)*(x/n)**np.exp(-(x/n)**a) count, bins, ignored = plt.hist(np.random.weibull(5., 1000)) a= np.arange(1, 100.)/50. scale = count.max()/weib(x, 1., 5.).max() scale = count.max()/weib(a, 1., 5.).max() plt.plot(x, weib(x, 1., 5.)*scale) plt.show()
33)zipf(a [, size])
此函数用于从Zipf分布中抽取样本。
例:
1 2 3 4 5 6 7 8 9 10 import numpy as np import matplotlib.pyplot as plt from scipy import special x=2.0 s=np.random.zipf(x, 1000) count, bins, ignored = plt.hist(s[s<50], 50, density=True) a = np.arange(1., 50.) b= a**(-x) / special.zetac(x) plt.plot(a, b/max(b), linewidth=2, color='r') plt.show()