1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
| import numpy as np import datetime import time from collections import defaultdict from . import mask as maskUtils import copy class COCOeval: # Interface for evaluating detection on the Microsoft COCO dataset. # # The usage for CocoEval is as follows: # cocoGt=..., cocoDt=... # load dataset and results # E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object # E.params.recThrs = ...; # set parameters as desired # E.evaluate(); # run per image evaluation # E.accumulate(); # accumulate per image results # E.summarize(); # display summary metrics of results # For example usage see evalDemo.m and http://mscoco.org/. # # The evaluation parameters are as follows (defaults in brackets): # imgIds - [all] N img ids to use for evaluation # catIds - [all] K cat ids to use for evaluation # iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation # recThrs - [0:.01:1] R=101 recall thresholds for evaluation # areaRng - [...] A=4 object area ranges for evaluation # maxDets - [1 10 100] M=3 thresholds on max detections per image # iouType - ['segm'] set iouType to 'segm', 'bbox' or 'keypoints' # iouType replaced the now DEPRECATED useSegm parameter. # useCats - [1] if true use category labels for evaluation # Note: if useCats=0 category labels are ignored as in proposal scoring. # Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified. # # evaluate(): evaluates detections on every image and every category and # concats the results into the "evalImgs" with fields: # dtIds - [1xD] id for each of the D detections (dt) # gtIds - [1xG] id for each of the G ground truths (gt) # dtMatches - [TxD] matching gt id at each IoU or 0 # gtMatches - [TxG] matching dt id at each IoU or 0 # dtScores - [1xD] confidence of each dt # gtIgnore - [1xG] ignore flag for each gt # dtIgnore - [TxD] ignore flag for each dt at each IoU # # accumulate(): accumulates the per-image, per-category evaluation # results in "evalImgs" into the dictionary "eval" with fields: # params - parameters used for evaluation # date - date evaluation was performed # counts - [T,R,K,A,M] parameter dimensions (see above) # precision - [TxRxKxAxM] precision for every evaluation setting # recall - [TxKxAxM] max recall for every evaluation setting # Note: precision and recall==-1 for settings with no gt objects. # # See also coco, mask, pycocoDemo, pycocoEvalDemo # # Microsoft COCO Toolbox. version 2.0 # Data, paper, and tutorials available at: http://mscoco.org/ # Code written by Piotr Dollar and Tsung-Yi Lin, 2015. # Licensed under the Simplified BSD License [see coco/license.txt] def __init__(self, cocoGt=None, cocoDt=None, iouType='segm'): ''' Initialize CocoEval using coco APIs for gt and dt :param cocoGt: coco object with ground truth annotations :param cocoDt: coco object with detection results :return: None ''' if not iouType: print('iouType not specified. use default iouType segm') self.cocoGt = cocoGt # ground truth COCO API self.cocoDt = cocoDt # detections COCO API self.evalImgs = defaultdict(list) # per-image per-category evaluation results [KxAxI] elements self.eval = {} # accumulated evaluation results self._gts = defaultdict(list) # gt for evaluation self._dts = defaultdict(list) # dt for evaluation self.params = Params(iouType=iouType) # parameters self._paramsEval = {} # parameters for evaluation self.stats = [] # result summarization self.ious = {} # ious between all gts and dts if not cocoGt is None: # 把GT中所有的img id 与 类别 id 加入 参数dict中 self.params.imgIds = sorted(cocoGt.getImgIds()) self.params.catIds = sorted(cocoGt.getCatIds()) def _prepare(self): ''' Prepare ._gts and ._dts for evaluation based on params 在目标检测中 _.gts 索引Ann的index为 【图片ip, 类别ip】,得到的是一个list数组,如果一张图片的一个类别有多个bbox, 那么list中将会有多个item ._dts同理 :return: None ''' def _toMask(anns, coco): # modify ann['segmentation'] by reference for ann in anns: rle = coco.annToRLE(ann) ann['segmentation'] = rle p = self.params if p.useCats: # 获取特定图片,特定类别的注释,主要是清除检测中出现gt中没有的img id,class id gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) else: gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds)) dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds)) # convert ground truth to mask if iouType == 'segm' if p.iouType == 'segm': _toMask(gts, self.cocoGt) _toMask(dts, self.cocoDt) # set ignore flag for gt in gts: # 部分比较小的物体,会设置忽略检测 根据json中的注释来定 gt['ignore'] = gt['ignore'] if 'ignore' in gt else 0 gt['ignore'] = 'iscrowd' in gt and gt['iscrowd'] if p.iouType == 'keypoints': gt['ignore'] = (gt['num_keypoints'] == 0) or gt['ignore'] self._gts = defaultdict(list) # gt for evaluation self._dts = defaultdict(list) # dt for evaluation # 给对应img,类别 添加对应的bbox信息 for gt in gts: self._gts[gt['image_id'], gt['category_id']].append(gt) for dt in dts: self._dts[dt['image_id'], dt['category_id']].append(dt) #得到的是每张图片,单个类别的检测结果的集合。 self.evalImgs = defaultdict(list) # per-image per-category evaluation results self.eval = {} # accumulated evaluation results def evaluate(self): ''' Run per image evaluation on given images and store results (a list of dict) in self.evalImgs :return: None ''' tic = time.time() print('Running per image evaluation...') p = self.params # add backward compatibility if useSegm is specified in params if not p.useSegm is None: p.iouType = 'segm' if p.useSegm == 1 else 'bbox' print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType)) print('Evaluate annotation type *{}*'.format(p.iouType)) # 取出GT中的,img cat id p.imgIds = list(np.unique(p.imgIds)) if p.useCats: p.catIds = list(np.unique(p.catIds)) p.maxDets = sorted(p.maxDets) self.params=p self._prepare() # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1] if p.iouType == 'segm' or p.iouType == 'bbox': computeIoU = self.computeIoU elif p.iouType == 'keypoints': computeIoU = self.computeOks # ious返回的是一个【M * N】的ndarry, 其中M是在这个img中,catId下有多少个预测的bbox, N是在这个img,catId下有多少个GT self.ious = {(imgId, catId): computeIoU(imgId, catId) \ for imgId in p.imgIds for catId in catIds} evaluateImg = self.evaluateImg maxDet = p.maxDets[-1] # self.evalImages 顺序是 K,A,M,I 一共K*A*M*I个单张图片的检测结果,单张图片的特定类别,特定面积范围,特定最大检测个数下的检测结果。 #我们可以按照这个来索引对应的检测结果,在后续accumulate函数中有具体使用。 self.evalImgs = [evaluateImg(imgId, catId, areaRng, maxDet) for catId in catIds for areaRng in p.areaRng for imgId in p.imgIds ] self._paramsEval = copy.deepcopy(self.params) toc = time.time() print('DONE (t={:0.2f}s).'.format(toc-tic)) # 这块用cython写的,主要返回的就是 imgId,catId对应的M*N矩阵,每个值都是对应框的IoU值 def computeIoU(self, imgId, catId): p = self.params if p.useCats: gt = self._gts[imgId,catId] dt = self._dts[imgId,catId] else: #把这张图片的所有类别的所有检测结果进行一个数组的合并 gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]] dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]] if len(gt) == 0 and len(dt) ==0: return [] #按照网络预测的置信度score排序 inds = np.argsort([-d['score'] for d in dt], kind='mergesort') dt = [dt[i] for i in inds] #把超出最大检测结果的bbox剔除 if len(dt) > p.maxDets[-1]: dt=dt[0:p.maxDets[-1]] if p.iouType == 'segm': g = [g['segmentation'] for g in gt] d = [d['segmentation'] for d in dt] elif p.iouType == 'bbox': g = [g['bbox'] for g in gt] d = [d['bbox'] for d in dt] else: raise Exception('unknown iouType for iou computation') # compute iou between each dt and gt region iscrowd = [int(o['iscrowd']) for o in gt] ious = maskUtils.iou(d,g,iscrowd) return ious def computeOks(self, imgId, catId): p = self.params # dimention here should be Nxm gts = self._gts[imgId, catId] dts = self._dts[imgId, catId] inds = np.argsort([-d['score'] for d in dts], kind='mergesort') dts = [dts[i] for i in inds] if len(dts) > p.maxDets[-1]: dts = dts[0:p.maxDets[-1]] # if len(gts) == 0 and len(dts) == 0: if len(gts) == 0 or len(dts) == 0: return [] ious = np.zeros((len(dts), len(gts))) sigmas = p.kpt_oks_sigmas vars = (sigmas * 2)**2 k = len(sigmas) # compute oks between each detection and ground truth object for j, gt in enumerate(gts): # create bounds for ignore regions(double the gt bbox) g = np.array(gt['keypoints']) xg = g[0::3]; yg = g[1::3]; vg = g[2::3] k1 = np.count_nonzero(vg > 0) bb = gt['bbox'] x0 = bb[0] - bb[2]; x1 = bb[0] + bb[2] * 2 y0 = bb[1] - bb[3]; y1 = bb[1] + bb[3] * 2 for i, dt in enumerate(dts): d = np.array(dt['keypoints']) xd = d[0::3]; yd = d[1::3] if k1>0: # measure the per-keypoint distance if keypoints visible dx = xd - xg dy = yd - yg else: # measure minimum distance to keypoints in (x0,y0) & (x1,y1) z = np.zeros((k)) dx = np.max((z, x0-xd),axis=0)+np.max((z, xd-x1),axis=0) dy = np.max((z, y0-yd),axis=0)+np.max((z, yd-y1),axis=0) e = (dx**2 + dy**2) / vars / (gt['area']+np.spacing(1)) / 2 if k1 > 0: e=e[vg > 0] ious[i, j] = np.sum(np.exp(-e)) / e.shape[0] return ious def evaluateImg(self, imgId, catId, aRng, maxDet): ''' perform evaluation for single category and image 计算本张图片,特定类别,特定面积阈值,特定最大检测结果下的result。 :return: dict (single image results) ''' p = self.params if p.useCats: # 本张图片特定类别的所有检测结果与GT gt = self._gts[imgId,catId] dt = self._dts[imgId,catId] else: gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]] dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]] if len(gt) == 0 and len(dt) ==0: return None for g in gt: #如果不符合特定面积的阈值,就忽略 if g['ignore'] or (g['area']<aRng[0] or g['area']>aRng[1]): g['_ignore'] = 1 else: g['_ignore'] = 0 # sort dt highest score first, sort gt ignore last # gtind 前面都是 ignore为0 的gt 后面都是 ignore为1的gt gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort') #挑出满足我们这个特定area阈值下的所有gt gt = [gt[i] for i in gtind] dtind = np.argsort([-d['score'] for d in dt], kind='mergesort') #按照置信度大小挑出满足这个最大检测个数下的所有dt dt = [dt[i] for i in dtind[0:maxDet]] iscrowd = [int(o['iscrowd']) for o in gt] # load computed ious #得到满足area阈值的gt与所有dt的iou结果 (M * n(gtind)) ious = self.ious[imgId, catId][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId] #得到我们需要设置的IoU阈值,超过定义为正样本,不符合则为负样本 T = len(p.iouThrs) G = len(gt) D = len(dt) #在每个阈值下的Gt是否得到匹配 gtm = np.zeros((T,G)) #在每个阈值下的Dt是否得到匹配 dtm = np.zeros((T,D)) #所有忽略的gt gtIg = np.array([g['_ignore'] for g in gt]) #所有忽略的dt dtIg = np.zeros((T,D)) #如果这张图片存在这个类别的gt与dt if not len(ious)==0: for tind, t in enumerate(p.iouThrs): #IoU index, IoU阈值 #按照置信度大小排序好的前 max_Det个dt for dind, d in enumerate(dt): # 如果m= -1 代表这个dt没有得到匹配 m代表dt匹配的最好的gt的下标 iou = min([t,1-1e-10]) m = -1 for gind, g in enumerate(gt): # 如果这个gt已经被其他置信度更好的dt匹配到了,本轮的dt就不能匹配这个gt了。 if gtm[tind,gind]>0 and not iscrowd[gind]: continue # 因为gt已经按照ignore排好序了,前面的为0,于是当我们碰到第一个gt的ignore为1时,判断这个dt是否已经匹配到了 #其他的gt,如果m>-1证明并且m对应的gt没有被ignore,就直接结束即可,对应的就是这个dt最好的gt。 if m>-1 and gtIg[m]==0 and gtIg[gind]==1: break # 如果计算dt与gt的iou小于目前最佳的IoU,忽略这个gt if ious[dind,gind] < iou: continue # 超过当前最佳的IoU,更新IoU与m的值 iou=ious[dind,gind] m=gind # 如果这个dt没有对应的gt与其匹配,继续dt的下一个循环 if m ==-1: continue # 把当前dt与第m个gt进行匹配,修改dtm与gtm的值,分别一一对应 dtIg[tind,dind] = gtIg[m] # 如果这个dt对应的最佳gt本身就是被ignore的,就把这个dt也设置为ignore。 dtm[tind,dind] = gt[m]['id'] gtm[tind,m] = d['id'] # set unmatched detections outside of area range to ignore a = np.array([d['area']<aRng[0] or d['area']>aRng[1] for d in dt]).reshape((1, len(dt))) dtIg = np.logical_or(dtIg, np.logical_and(dtm==0, np.repeat(a,T,0))) # store results for given image and category return { 'image_id': imgId, 'category_id': catId, 'aRng': aRng, 'maxDet': maxDet, 'dtIds': [d['id'] for d in dt], 'gtIds': [g['id'] for g in gt], 'dtMatches': dtm, 'gtMatches': gtm, 'dtScores': [d['score'] for d in dt], 'gtIgnore': gtIg, 'dtIgnore': dtIg, } def accumulate(self, p = None): ''' Accumulate per image evaluation results and store the result in self.eval :param p: input params for evaluation :return: None ''' print('Accumulating evaluation results...') tic = time.time() if not self.evalImgs: print('Please run evaluate() first') # allows input customized parameters if p is None: p = self.params p.catIds = p.catIds if p.useCats == 1 else [-1] T = len(p.iouThrs) # 多少个ioU的阈值 R = len(p.recThrs) #多少个recall的阈值 K = len(p.catIds) if p.useCats else 1 # 多少个类 A = len(p.areaRng) #多少个面积阈值 M = len(p.maxDets) #多少个最大检测数 precision = -np.ones((T,R,K,A,M)) # -1 for the precision of absent categories recall = -np.ones((T,K,A,M)) scores = -np.ones((T,R,K,A,M)) # create dictionary for future indexing _pe = self._paramsEval catIds = _pe.catIds if _pe.useCats else [-1] setK = set(catIds) setA = set(map(tuple, _pe.areaRng)) setM = set(_pe.maxDets) setI = set(_pe.imgIds) # get inds to evaluate k_list = [n for n, k in enumerate(p.catIds) if k in setK] #对应不重复的K的id list 后续同此 m_list = [m for n, m in enumerate(p.maxDets) if m in setM] a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA] i_list = [n for n, i in enumerate(p.imgIds) if i in setI] I0 = len(_pe.imgIds) #多少个图片 A0 = len(_pe.areaRng) #多少个面积阈值 # retrieve E at each category, area range, and max number of detections # self.evalImgs 索引顺序是 K,A,M,I 所以找到在特定K,A,M下的所有图片,需要按照如下的三维索引 for k, k0 in enumerate(k_list): Nk = k0*A0*I0 # 当前K0前面过了多少图片与面积阈值 for a, a0 in enumerate(a_list): Na = a0*I0 #在当前K0前面过了多少阈值 for m, maxDet in enumerate(m_list): #k0,a0下的所有Images E = [self.evalImgs[Nk + Na + i] for i in i_list] E = [e for e in E if not e is None] if len(E) == 0: continue #k0,a0,maxdet下的所有Images的得分 dtScores = np.concatenate([e['dtScores'][0:maxDet] for e in E]) # different sorting method generates slightly different results. # mergesort is used to be consistent as Matlab implementation. # k0,a0,maxdet下所有Images得分从高到底的索引 inds inds = np.argsort(-dtScores, kind='mergesort') #按照得分从高到低排序 dtScoresSorted = dtScores[inds] # 在当前k0,a0下,每张图片不超过MaxDet的所有det按照ind排序。 dtm[T,sum(Det) in every imges] dtm = np.concatenate([e['dtMatches'][:,0:maxDet] for e in E], axis=1)[:,inds] dtIg = np.concatenate([e['dtIgnore'][:,0:maxDet] for e in E], axis=1)[:,inds] gtIg = np.concatenate([e['gtIgnore'] for e in E]) #有多少个正样本 npig = np.count_nonzero(gtIg==0 ) if npig == 0: continue # 如果dtm对应的匹配gt不为0,且对应的gt没有被忽略,这个dt就是TP tips:[1,0,1,0,1,0] tps = np.logical_and( dtm, np.logical_not(dtIg) ) #dtm对应的gt为0, 并且这个dt也没有被忽略,这个dt就是FP tips:[0,1,0,1,0,1] fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg) ) # 按照行的方式(每个Iou阈值下)进行匹配到的累加 每个index也就是到这个置信度的时候有多少个tp,有多少个fp tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float) fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float) for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)): tp = np.array(tp) #得到这个Iou下对应的tp tips:[1,0,2,0,3,0] fp = np.array(fp) #得到这个IoU下对应的fp tips:[0,1,0,2,0,3] nd = len(tp) #有多少个tp rc = tp / npig #每个置信度分数下对应的recall 如上述例子 若有3个正样本 则rc=[1/3,1/3,2/3,2/3,1,1] pr = tp / (fp+tp+np.spacing(1)) #每个阶段对应的精度 q = np.zeros((R,)) ss = np.zeros((R,)) if nd: recall[t,k,a,m] = rc[-1] else: recall[t,k,a,m] = 0 # numpy is slow without cython optimization for accessing elements # use python array gets significant speed improvement pr = pr.tolist(); q = q.tolist() #当前i下的最大精度 for i in range(nd-1, 0, -1): if pr[i] > pr[i-1]: pr[i-1] = pr[i] #找到每个recall发生变化的时候的index,与p.recThrs一一对应,最接近其的值的index inds = np.searchsorted(rc, p.recThrs, side='left') try: for ri, pi in enumerate(inds): #得到每个recall阈值对应的最大精度,存入q中 q[ri] = pr[pi] #得到这个recall值下的得分 ss[ri] = dtScoresSorted[pi] except: pass precision[t,:,k,a,m] = np.array(q) # 按照recall的大小存入对应的精度 scores[t,:,k,a,m] = np.array(ss) #存入对应的分数 self.eval = { 'params': p, 'counts': [T, R, K, A, M], 'date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'precision': precision, 'recall': recall, 'scores': scores, } toc = time.time() print('DONE (t={:0.2f}s).'.format( toc-tic)) def summarize(self): ''' Compute and display summary metrics for evaluation results. Note this functin can *only* be applied on the default parameter setting ''' def _summarize( ap=1, iouThr=None, areaRng='all', maxDets=100 ): p = self.params iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}' titleStr = 'Average Precision' if ap == 1 else 'Average Recall' typeStr = '(AP)' if ap==1 else '(AR)' iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \ if iouThr is None else '{:0.2f}'.format(iouThr) # 如果是'all' 就是所有尺度, 如果不是就是特定的尺度 aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] # 如果是ap,就从precision中得到对应面积阈值、最大检测数下的精度 if ap == 1: # dimension of precision: [TxRxKxAxM] s = self.eval['precision'] # 得到特定IoU下的所有pr if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] s = s[:,:,:,aind,mind] # 如果是recall,就取出recall的值 else: # dimension of recall: [TxKxAxM] s = self.eval['recall'] if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] s = s[:,:,aind,mind] if len(s[s>-1])==0: mean_s = -1 #除去-1 其他的计算平均精度 else: mean_s = np.mean(s[s>-1]) print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s)) return mean_s def _summarizeDets(): stats = np.zeros((12,)) stats[0] = _summarize(1) # all iouThr, 所有recall下,所有面积下, 所有类别,在最大检测数100下的的平均AP # [1]:IoU阈值为0.5 所有recall下,所有面积下, 所有类别,在最大检测数100下的的平均AP stats[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2]) # [2]:IoU阈值为0.75 所有recall下,所有面积下, 所有类别,在最大检测数100下的的平均AP stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2]) #[3]: all iouThr, 所有recall下,small面积下, 所有类别,在最大检测数100下的的平均AP stats[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2]) #[4]: all iouThr, 所有recall下,medium面积下, 所有类别,在最大检测数100下的的平均AP stats[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2]) #[5]: all iouThr, 所有recall下,large面积下, 所有类别,在最大检测数100下的的平均AP stats[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2]) #[6]: all iouThr,所有面积下, 所有类别,在最大检测数1下的的平均recall stats[6] = _summarize(0, maxDets=self.params.maxDets[0]) #[7]: all iouThr,所有面积下, 所有类别,在最大检测数10下的的平均recall stats[7] = _summarize(0, maxDets=self.params.maxDets[1]) # [8]: all iouThr,所有面积下, 所有类别,在最大检测数100下的的平均recall stats[8] = _summarize(0, maxDets=self.params.maxDets[2]) #[9]: all iouThr,small面积下, 所有类别,在最大检测数100下的的平均recall stats[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2]) # [10]: all iouThr,medium面积下, 所有类别,在最大检测数100下的的平均recall stats[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2]) # [11]: all iouThr,large面积下, 所有类别,在最大检测数100下的的平均recall stats[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2]) return stats def _summarizeKps(): stats = np.zeros((10,)) stats[0] = _summarize(1, maxDets=20) stats[1] = _summarize(1, maxDets=20, iouThr=.5) stats[2] = _summarize(1, maxDets=20, iouThr=.75) stats[3] = _summarize(1, maxDets=20, areaRng='medium') stats[4] = _summarize(1, maxDets=20, areaRng='large') stats[5] = _summarize(0, maxDets=20) stats[6] = _summarize(0, maxDets=20, iouThr=.5) stats[7] = _summarize(0, maxDets=20, iouThr=.75) stats[8] = _summarize(0, maxDets=20, areaRng='medium') stats[9] = _summarize(0, maxDets=20, areaRng='large') return stats if not self.eval: raise Exception('Please run accumulate() first') iouType = self.params.iouType if iouType == 'segm' or iouType == 'bbox': summarize = _summarizeDets elif iouType == 'keypoints': summarize = _summarizeKps self.stats = summarize() def __str__(self): self.summarize() class Params: ''' Params for coco evaluation api ''' def setDetParams(self): self.imgIds = [] self.catIds = [] # np.arange causes trouble. the data point on arange is slightly larger than the true value self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True) self.maxDets = [1, 10, 100] self.areaRng = [[0 ** 2, 1e5 ** 2], [0 ** 2, 32 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]] self.areaRngLbl = ['all', 'small', 'medium', 'large'] self.useCats = 1 def setKpParams(self): self.imgIds = [] self.catIds = [] # np.arange causes trouble. the data point on arange is slightly larger than the true value self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True) self.maxDets = [20] self.areaRng = [[0 ** 2, 1e5 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]] self.areaRngLbl = ['all', 'medium', 'large'] self.useCats = 1 self.kpt_oks_sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62,.62, 1.07, 1.07, .87, .87, .89, .89])/10.0 def __init__(self, iouType='segm'): if iouType == 'segm' or iouType == 'bbox': self.setDetParams() elif iouType == 'keypoints': self.setKpParams() else: raise Exception('iouType not supported') self.iouType = iouType # useSegm is deprecated self.useSegm = None
|